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Boundary layer calculations on rotating surfaces make it possible 
to determine the friction and heat and mass transfer in the boundary 
layer. Problems of this type are encountered in turbine construction 
and other fields. The question has been thoroughly investigated for 
rotating disks and cylinders [1]. For surfaces of other configuration, 
only integral methods have been developed: by Howarth [2] and Nigam 
[3] for a sphere, and in [4] for an arbitrary surface. The necessity of 
satisfying two integral relations (instead of one, for two-dimensional 
flow) makes the calculations rather complex. It is advisable, therefore, 
to use for this purpose a class of exact similar solutions for the bound- 
ary layer on rotating surfaces, the existence of which has already 

been demonstrated by Gels [5]. 
The results of calculations on the basis of this class of similar so- 

lutions are given in this paper. An approximate method based on the 
use of similar solutions is developed for calculating the boundary layer on 
rotating surfaces of arbitrary shape, 

w 1 Transformation of equations. We examine the equations Of 
the laminar boundary layer that forms on an axisymmetric surface ro- 
tating at a constant angular velocity co in a medium at rest [1]: 

Ou v~ dr Ou O~u 

Ov uv dr Ov 02v 
u - ~  + -F-- - ~  + w "F~-, = v ~ (11)  

Ou u dr Ow 
0-7- + 7 - ~ -  + -~ -z  = ~  

llere are the coordinates (Fig. 1): x axis--along the intersection 
of the surface by a plane norma 1 to the axis of rotation, and z axis-- 
normal to the tangential plane; r(x) defines the meridional profile of 
the surface; u, v, co, are the velocity-vector components that corre- 
spond to the x, y, z axes; and v is the kinematic viscosity. 

Fig. 1 

Gcis [5] has shown that similar solutions of the system (1.1) exist 

only tf r(x) is a power 

r = A (x + me) TM (1.2) 

(or exponential) function of x + x0. Indeed, let us introduce a stream 
functiou ~ such that 

O~ / Oz = ru, O ,  / O.~ = - -  rw. (1.a) 

We perform (for m > 0) the change of variable 

= z 1/-~-PN (r" = dr I dx). (1.4) 

We set 

* = - -  %.r~E (g) K ; - g T ; ' ,  u = r~oF ( 0 ,  v = rO~G (~). (1.5) 

Then, if r(x) has the form (1.2), Eqs. (1.1) will transform into a 
system of ordinary differential equations 

F" = F 2 - -  G ~ + ~HF', G" = 2gO -+- ~HG', 
(1.6) 

H'-I-  2 F =  0 ,  

where parameter $ is expressed in terms of the exponent m in the form 

I + 3m (1.7) 
[3 4m 

For r decreasing with increasing x, i .e . ,  for m < 0, ~ should be 
replaced by - f  in the substitutions (1.4) and (1.5). Then, if F and H 
are exchanged for --F and -H, Eqs. (1.6) retain their form. 

By simple computation, it is also possible to obtain an expression 
for 

w 
1/-~V.. = [~H + 2 (13 - 1) F~.  (1.8) 

We note that the case where r(x) is an exponential function of 
(x + x0) corresponds to 13 = 3/4. 

The shape of the surface that corresponds to the exponential ex- 
pression (1.2) depends on the constants A and m. In a rectangular 
system of coordinates (r, x ~ the shape of the generatrix is defined by 
the equations 

x ~ = ~ V  t -- m2A 2 (x -7 xo) 2(m-1) dx, r = A (x + Xo) m. (1.9) 

o 

From m < 0, i . e . ,  5 < 3/4, the integrand has positive values 
starting from x0, which corresponds to the initial radius ro 

1 m 1 

x o = ( m A )  1 - m  , r o == m l - - m A  1 - m  �9 ( 1 . 1 0 )  

For 0 < m ~ 1, i . e . ,  B -- 1, the surface commences with the mini- 
mum radius calculated from (1.10), the surface radius increasing from 
there on with increasing x. The casem > 1, i , e . ,  3/4 < B < i, cor- 
responds to a surface that commences with the radius r = 0 and ter- 
minates with the radius r 0 as determined from (1.10). 

# Q# zd ~~ 

~' Fig. 2 

From (1.9) it follows that all surfaces thai correspond to a fixed 

value of m and variable values of A are similar, and the following 

equalities hold: 

z . ~  x . ~ 1 7 6  m - 1  , r ,  = r : A  m - 1  . ( 1 . 1 1 )  

This explains why the dimensionless equations of motion (1.4) 
are independent of A. Figures 2 through 4 show the surface shapes 
calculated from Eqs. (1.9). 
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It should be noted that  Eqs. ( t . 1 )  do not hokl ucar the edge  that  

correspond to the in i t i a l  (or f inal)  surfacc radhts r,,. One should also 

rcmcnd)er  that I'kls. (1.1) hold only  in the case where the boundary-  

layer  thickness is apprec iab ly  less than the corresponding wfiue of r(x); 

this condi t ion is no longer va l id  when 8 approaches :{/4, nor lbr smal l  A. 

The boundary condit ions of the problem are 

S,'(O)= ,'#(0)=:0, ( ; ( O ) = l ,  .1"(~) :G(.-~) -0 (1.12) 

Note that  for 13 = 1 we have  the case of a ro ta t ing p lane  (with A = 

= 1) and also of a c i rcu la r  cone (with a cone angle  of 2 arc sin A). A 

solut ion for this case was ob ta ined  by Cochran [(;] and was la te r  improv-  

ed in connec t ion  with other problems [7, 8]. 

QZ ~o 08 

Fig. 3 

w 2. The case~3= 0. For 8 =  O, a solut ion of the system (1.6) with 

the boundary condi t ions  (6.12) can be obta ined in closed form. Indeed, 

i f  the complex  funct ion 

g F ; iG (2.1) 

is in t roduced then, for 8 = 0, the system (1.g) reduces to the form 

y,, = y2, H '  ::- -- 2Re (!,,) (2,2) 

whi le  the boundary condi t ions (1.12) take the form 

,t (o) = i, ,j (~)  = o, H (t/) : o.  (2.3) 

Then 

L__</:; +/ . . . . .  :__ 

+U J-!- --i +;< ...... ; < .... ;--;, 
Fig .4  

d (y')'- f 2 d~ - -  2g'y 2, (y ' )2 : :  2 y:dy = -~ ya - -  c ,  

where, in accordance  with (2.3), c = 0. t i cnce  we have  

d~ / d y  = (a71)  - (2.4) 

In tegra t ing  (2.4) with a l l o w a n c e  for (2.3), we get  

V : 6 : [ [~q-  2 V 3 ~ - -  i ( 2  ]/-2,; !-t;)]. (2.:0 

In this manne r  we obta in  

~'-'-{- 2 g:~r 
Y;' = "; ( ~  -i- 2 i/-{7r -i- (z V-;]r -t- ,q?" (?~:J 

2 Va~; I u 
6' tl (.~-I- 2 V:ir ~ I- (2 V:7[ + (i? 

/s - . , r  r 

t -  

o 

v7 "F.. I__1 l't'? 
gO Y8 J.l; 

Fig+ :, 

Here, 

F" ({1) ~ - -  G'  (0)  = l .  a I / 3 ,  H ( o c )  = - -  2 1 / -3  ( 2 . 7 )  

Note tha t  

O 3  S O  

t (i •) a d ~  = !m gel , 

u o 

o z  c o  c o  

.... f / . , +  I < - -  : 
I 

I I  0 0 

co  

o 

Taking  (2.4) into account,  for the boundary - l aye r  charac te r i s t i cs  

we obta in  the fol lowing thicknesses 

J ~ ! a < = V s ,  ~c=+ a ~ e ; : V a ( T _  . (2.s) 
I I  I )  

w 3. Solution of the system of equat ions.  The noni inear  boundary-  

value problem (1.G), (1.12) has been solved by the t r i a l - and -e r ro r  

method,  mak ing  use of  i n t e r p o l a t i o n  

Assigning approx imate  values  of the miss ing boundary condi t ions 

in g =  0, F ( 0 ) = a ,  G ( % = b ,  we solve the prob lem with the in i t i a l  
condit ions not only for these values but also for ( a  + An, b) and (a,  b ~ 

+ Ab), and then obta in  by l inear  in te rpo la t ion  with respect to a and b, 

the improved correct ions 5a and 6b to the i n i t i a l  a and b from the 

...... ~ ~ [ % - ~ 1 ~  

, I ' ~' 

. . . . .  �9 1 5 :  

! j 
I . . . . . .  " - 

r . . . . . .  . o + o  +d 

0 
0 /d 25 r 
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condition F(oo) = G(~) = 0, We then repeat the process, starting with 

a + 6a, b + 5b, and so forth. 
Note that, due to the nonlinearity of the problem, the iteration 

process does not converge if  the ini t ial  values of a and b are too 

roughly approximated. 
The approximate values for a and b are determined by interpola- 

tion, first from known values for 8 = 9  (w 2) a n d B =  116], and 
then on the basis of solutions obtained for other values of 8. The dif- 

ficulty associated with an infinite l imi t  of integration is overcome by 
taking into account that, starting with a certain finite value of g = g* 
(~* = 12 for 6 >- 1), the unknown functions already have their values 
almost at infinity, specifically F(g*) = 9, G(r = 0. Having per- 

formed the calculat ion for a sufficiently large value of ~* - o f  the 

order of 1 2 - w e  extend the calculations to a still larger value of g*. 
If there is no change in the results, the process of increasing the ac-  

curacy of the solution is terminated at this point. 

83 e'~# , 

I ; a 4 5 fl 8 

Fig. 7 

It can be seen that there is good correlation between the data. For 

verification purposes we can use the relation 

oo 

I F G d ~ = - - G ' ( O ) : 2 ( i + ~ )  
o 

which follows from (1.6). Calculations show that the relation is satis- 
fied with an accuracy of 10 -7 . The principal results of the calcula-  

tions are given in a table and in Figs. 5 and 6. The solution was 

obtained on a Ural-2 computer, programmed by A. Z. Serazetdinov. 
w 4. Approximate method for an arbitrary rotating surface, We 

will  use a set of solutions for various values of fl to develop an ap- 

proximate method for calculat ing the boundary layer on a rotating sur- 

face of arbitrary shape. For this purpose, the given surface is broken 
down in separate regions, each of which is approximated by a surface 

governed by the power law r = A(x + x0) m. As a basis for the calcula-  

tions, we take the change in boundary layer thickness 

co 
�9 V S */~. 

A• = V J  dz = C (D 
o 

Let x I and x 2 be the beginning and end, respectively, of one of 

the regions of the surface. The boundary-layer parameters are known 
for x I and have to be determined for x z. Let a surface from the family 

(1.2) pass through x 1 and x 2. Then 

X2 - -  9,1 711 = (x:  + x0 = + (4 .2 )  
rl kxl + Xo / 

Since r = mr/(x + x0), from (4.1) we have 

i I (Xl"~ Xo) = CsV I @mrlAyi2 . (4.3) 

System (1.6) is integrated by Merson's modification of the Runge- 

Kutta method [9]. The accuracy of the calculations was up to e = 10 -7 

for each step, the boundary conditions being satisfied with the same 

accuracy. 
Some resuhs of calculations performed for fl = 1 are given below; 

results of other authors are given for comparison: 

a = F' (o) [b = G" (0) -- u (oo) B c 

0.5i0233 --0,6i5922 0.88447 i.27144 0.672527 

[s] 0.510233 --0,615922 0.88446 - -  - -  

[7] 0.5i0 --0.6i59 0.8845 t.27i 0,672i 

[q 0.5i0 --0.6i6 0.886 -- -- 

8 g# R8 t2 ~5 

6 ,r/Rm 
08 /.8 gO az  

Fig. 8 

F" (O) --0" r --H (oc) B C 

0 
0 . i5  

.30 

.45 

.60 

.75 

.85 

.95 
1.0 

.1 

.2 

.3 
� 9  
.5 

2.0 
3 
4 
5 
6 
7 
8 
9 
iO 

0.577350 
.566170 
.555675 
.544934 
.53467i 
�9 
.518889 
.513052 
.5i0233 
.504783 
.499576 
.494598 
.489834 
.485272 
.465073 
.434162 
,4it243 
�9 
,378632 
.366352 
�9 
,346659 
.338558 

0.577350 
.583070 
.58880i 
.594552 
.600364 
.606i4i 
.6i0039 
.6i3958 
.615922 
.619850 
.623771 
.627677 
.63156i 
.635417 
.654i74 
.688635 
.7i9243 
�9 
.77i498 
.794224 
.81520i 
.834704 
.852950 

3.46410 
2.26063 
i.66504 
1.35307 
1.16548 
1.03755 
0.969198 

.9i0708 

.884475 

.8370i7 

.795184 

.75798i 

.724642 

.694562 

.579152 

.443089 
�9 
.31i545 
.2739i2 
.245425 
.2230i4 
.204862 

. i 8 9 8 i 9  

1.73205 
�9 
�9 
.433i4 
�9 
�9 
.30650 
.28259 
.27144 
.25052 
.23i24 
.2i338 
.i9676 
.18123 
. i i620 
.02530 

0.962485 
.9i5179 
.8776i4 
.846681 
.820534 
�9 
.778229 

0.782999 
.760727 
.74118i 
.723858 
.708i60 
.693829 
.684947 
.676553 
�9 
�9 
.657453 
.650477 
�9 
.637507 
.609756 
.567934 
.537274 
.513388 
.493996 
.477778 
.4639i0 
.45t843 
.441196 
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Stths[ituting this expression into (4.2) and denotiug 

Z x2 - -  xl  "~ 
rl mA!l~2 (4.4) 

r ' - - r '  (A 2J~) 

w e  o b t a i l l  t h e  f o r m u l a  

A"= [(1 + ZC'a/m) ~ -  l l : g  . (4.5) 

From the known values of C(8), it is possible m construct, with the 
aid of this formula, a series of curves A(8) for wtrious values of Z (Fig. 
7). By analogy with formula (4,3), we may write 

mr2 

and then eliminate xo as in (4.3). Finally, we get 

Recent experiments by Ik~wden and i.ord [12j showed that such a 
"break" does not exist; from the equator there is emitted a thin radial 

jet created by the collision of fluid masses flowing in from the two 
hemispheres, 

Let us calculate the ratios of the local values of the skin-fric- 
tion stress components at the variable radius r to tile correspond- 
ing values for a disk (denoted by the superscript e) at the same 
radius and the same to, p, aud u. The values obtained by our 
method (points in Fig. 8) correlate well with the results obtained in 
[4] by an integral method (continuous lines) both for rx/rx ~ (curve 1) 
and ry/r i (curve 2). It should bc noted, however, that the dimenskm- 
less friction stress components (4.7) themselves are determined more 
accurately by our method. 

An aualogous calculation was performed for a half-body of row> 
lution whose shape derives from the superposition of a uniform flow 
on the flow from a three-dimensional source. This result also agrees 
well with calculation by the method of integral relations [4] (curves 
1 ~ and 2~ 

( hve ~)2 = (hu~ ~-)l ~. (t + ZC~""m) " (4.t0 

l-laving determined from the values xl, xz, r 1, r a, and the dimension- 
less boundary layer thickness (A. 2 to/u) at point xl the values of Z and 
A from (4.4), we find from Fig. ? the corresponding value of 13 that is 
in one-to-one correspondence with the number C2/m. It is then possi- 
ble from (4.6) to determine the boundary-layer thickness at the point 
x 2, and so forth. Thus, passing from point to point, it is possible to 
determine from the 8 values obtained, not only Ay, but also all the 
other boundary-layer characteristics, in particular, the friction stress 
components 

' . i "[:v 

the displacement thickness 

co 

6y*= a d ;  ~7: 
II 

(4.8i 

and the velocity profiles, 

It should be remembered that the method proposed is applieable to 
surfaces for which i # 0. 

Note that an analogous method was previously proposed by Smith 
[10] for two-dimensional flows. 

We will compare our results with those obtained by other methods. 
Howarth [2], Nigam [3], and the author [4] have calculated the boun- 
dary layer on a rotating sphere by the method of integral relations. 
It has been shown that Nigam's assumption of a constant boundary- 

layer thickness is not justified as confirmed by experimental evidence 
obtained by Kobashi [113. Nor does Nigam's result hold concerning 
the "break" in the boundary layer at large distances from the equator. 
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