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CALCULATION OF THE BOUNDARY LAYER ON AN ARBITRARY AXISYMMETRIC SURFACE ROTATING
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Boundary layer calculations on rotating surfaces make it possible
to determine the friction and heat and mass transfer in the boundary
layer. Problems of this type are encountered in turbine construction
and other fields. The question has been thoroughly investigated for
rotating disks and cylinders [1]. For surfaces of other configuration,
only integral methods have been developed: by Howarth [2] and Nigam
[3] for a sphere, and in [4] for an arbitrary surface. The necessity of
satisfying two integral relations (instead of one, for two-dimensional
flow) makes the calculations rather complex. It is advisable, therefore,
to use for this purpose a class of exact similar solutions for the bound-
ary layer on rotating surfaces, the existence of which has already
been demonstrated by Geis [5].

The results of calculations on the basis of this class of similar so-
lutions are given in this paper. An approximate method based on the
use of similar solutions is developed for calculating the boundary layer on
rotating surfaces of arbitrary shape.

§ 1. Transformation of equations. We examine the equations of
the laminar boundary layer that forms on an axisymmetric surface ro-
tating at a constant angular velocity w in a medium at rest [1}
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Here are the coordinates (Fig.1): x axis—along the intersection
of the surface by a plane normal to the axis of rotation, and z axis—
normal to the tangential plane; r(x) defines the meridional profile of
the surface; u, v, w, are the velocity-vector components that corre-
spond to the X, y, 2z axes; and v is the kinematic viscosity.

Geis [5] has shown that similar solutions of the system (1.1) exist
only if 1(x) is a power

r=A(z+ 2™ (1.2)

(or exponential) function of x + xo. Indeed, let us introduce a stream

function ¢ such that
o/ 9z = ru, M/ dxr = — rw. (1.3)

We perform (for m > 0) the change of variable

t=zVorlv (r = dr [ d2). (1.4)
We set
=127 () Vw/r, u=roF@), v=roGQ{. (1.5

Then, if x(x) has the form (1.2), Egs. (1.1) will transform into a
system of ordinary differential equations

Fr = F2 — @ + BHF', G = 2FG + pHG",
(1.6)

H + 2F =0,
where parameter B is expressed in terms of the exponent m in the form

p=ttim 1.7
4m
For r decreasing with increasing x, i.e., form < 0, f should be
replaced by -1 in the substitutions (1.4) and (1.5). Then, if F and H
are exchanged for -F and =H, Egs. (1.6) retain their form.
By simple computation, it is also possible to obtain an expression
for

w

Vvor

We note that the case where 1(x) is an exponential function of
(x + x) corresponds to B = 3/4.

The shape of the surface that corresponds to the exponential ex~
pression (1.2) depends on the constants A and m. In a rectangular
system of coordinates (r, X ), the shape of the generatrix is defined by
the equations

=BH 42 (B — 1) FL. .8)
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re=A x4+ z)". (1.9)

Fromm < 0, i.e., B < 3/4, the integrand has positive values
starting from xq, which corresponds to thz initial radius rq

1 _mo 1
xy = (mAYI™, ry == mlmM g™ (1.10)
For 0 < m =1, i.e., B= 1,the surface commences with the mini-
mum radius calculated from (1.10), the surface radius increasing from
there on with increasing x. The case m > 1, i.e., 3/4 < B < L, cor-
responds to a surface that commences with the radius r = 0 and ter-

minates with the radius ry as determined from (1.10).
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From (1.9) it follows that all surfaces that correspond to a fixed
value of m and variable values of A are similar, and the following
equalities hold:

1 1

=22 A™ | p =A™ (1.11)

%,° = f("*),

This explains why the dimensionless equations of motion (1.4)
are independent of A. Figures 2 through 4 show the surface shapes
calculated from Egs. (1.9).
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It should be noted that £gs. (1.1) do not hold near the edge that
correspond to the initial (or final) surface radius ry. One should also
remember that £gs. (1.1) hold only in the case where the boundary-
layer thickness is appreciably less than the corresponding value of 1(x);
this condition is no longer valid when 8 approaches 3/4, nor for small 4.

The boundary conditions of the problem are

FQY= H{0)=:0, GO)=1, F(x) Goo) 0 (1.12)

Note that for 8 =1 we have the casc of a rotating plane (with A =
= 1) and also of a circular cone (with a cone angle of 2 arc sin A). A
solution for this case was obtained by Cochran [6] and was later improv-
ed in connection with other problems 7, 8.

Fig.3

§ 2. The case §=0. For B= 0, a sotution of the system (1.6) with
the boundary conditions (6.12) can be obtained in closed form. Indeed,
if the complex function

y—= F-- G (2.1)
is introduced then, for 8 = 0, the system (1.6) reduces to the form

o = — 2Re ()

(2.2)
while the boundary conditions (1.12) take the form
y Oy =i  y(x)=0 HW :0. (2.3)
Then
d ') , , . 2
e T Y W)? == 2Sy-dy=§y“—c,
where, in accordance with (2.3), ¢ = 0. Hence we have
g/ dy = Gl (2.4)
Integrating (2.4) with allowance for (2.3), we get
y= 64+ 2V3— i@V (2.5)
In this manner we obtain
2.2 ]
F =6 S Vs (2.6)
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Fray - — ¢ 0y =1%, Vi ()= —2V5 (2.7)
Note that
5 Gdl = Tm | 5 yd’
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()
= 5 yyds + F'(0).

i

Taking (2.4) into account, for the boundary-layer characteristics
we obtain the following thicknesses

B:S Gag = V3, =S Grdf = VE(—}ﬂ%) (2.8)

0 0

§ 8. Solution of the system of equations.  The nonlinear boundary-
valuc problem (1.6), (1.12) has been solved by the trial-and-error
method, making use of interpolation.

A551gn1ng apprO\m1 ate values of the missing boundary conditions
in¢g=0, F@O)=a, G (O) =b, we solve the problem with the initial
conditions not only for these values but also for (a + g, b)and (a, b +
+4b), and then obtain by linear interpolation with respect to @ and b,
the improved corrections 8a and 6b to the initial 8 and b from the
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condition F(w) = G(«) = 0. We then repeat the process, starting with
a +&a,b +8b, and so forth,

Note that, due to the nonlinearity of the problem, the iteration
process does not converge if the initial values of a and b are too
roughly approximated,

The approximate values for ¢ and b are determined by interpola-
tion, first from known values for 8 =0 (§ 2) and B = 1[6), and
then on the basis of solutions obtained for other values of B. The dif-
ficulty associated with an infinite limit of integration is overcome by
taking into account that, starting with a certain finite value of { = ¢*
(¢* =12 for B = 1), the unknown functions already have their values
almost at infinity, specifically F(¢*) =0, G(£* = 0. Having per-
formed the calculation for a sufficiently large value of ¢*—of the
order of 12—we extend the calculations to a still larger value of £*,
If there is no change in the results, the process of increasing the ac-
curacy of the solution is terminated at this point.
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System (1.6) is integrated by Merson's modification of the Runge-
Kutta method [9]. The accuracy of the calculations was up to & = 1077
for each step, the boundary conditions being satisfied with the same
accuracy.

Some results of calculations performed for 8 =1 are given below;
results of other authors are given for comparison:

It can be seen that there is good correlation between the data. For
verification purposes we can use the relation

SM@=_0mﬂa+m
0

which follows from (1.6). Calculations show that the relation is satis~-
fied with an accuracy of 1077, The principal results of the calcula-
tions are given in a table and in Figs. 5 and 6. The solution was
obtained on a Ural-2 computer, programmed by A. Z. Serazetdinov.

§ 4. Approximate method for an arbitrary rotating surface. We
will use a set of solutions for various values of 8 to develop an ap-
proximate method for calculating the boundary layer on a rotating sur-
face of arbitrary shape. For this purpose, the given surface is broken
down in separate regions, each of which is approximated by a surface
governed by the power law r = A(x + xo)™. As a basis for the calcula-
tions, we take the change in boundary layer thickness

A, = So(%)z dz=C () (a‘;—)/

Let x; and x, be the beginning and end, respectively, of one of
the regions of the surface. The boundary-layer parameters are known
for x; and have to be determined for x;. Let a surface from the family
(1.2) pass through x; and x;. Then

(4.1)

T xz‘i‘mo)m: £y — z \™
ry (xl -+ @y (1 + wy - g ) . (4.2)
Since r = mr/(x + %), from (4.1) we have

1/ (@1 =) = Cv /q’.omrlAul2 . (4.3)

! W EERELS
AN

a= F'(0) [b=G(0) — H (o0) B c
0.510233 —0,615022 0.88447 1.27144  0.672527
[] 0.510233 —0.615922 0.88446 — —
[7] 0.510 —0.6159 0.8845 1,274 0.6721
{5} 0.510 —0.616 0.886 — —

B F(0) —G )

0 0.577350 | 0.577350

0.15 .566170 .583070

.30 -555675 .588801

.45 -544934 -594552

-60 -534674 -600364

.75 -524996 .606441

.85 .518889 -610039

.95 .543052 .613958

1.0 .540233 .615922

1 -504783 -619850

2 .499576 .623771

.3 .494598 -627677

4 .| .489834 .631564

5 .485272 .635417

2.0 465073 -654174

3 1434162 -688635

4 L1243 .719243

5 -393277 - 746662

8 .378632 “771498

7 -366352 \794224

8 -355829 -815201

9 -346659 .834704

10 -338558 .852950
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3.46410 1.73205 0.782999
2.26063 . 59623 760727
1.66504 . 50527 L741181
1.35307 43314 .723858
1.16548 37826 . 708160
1.03756 .33288 .693829
0.969198 .30850 684947
.910708 28259 676553
884475 27144 672527
.837017 . 25052 664792
795184 .23124 657453
757981 .21338 650477
. 7124642 19676 .643837
694562 18123 837507
579152 .11620 609756
443089 .02530 567934
.363984 0.962485 537274
811545 L915479 .513388
.273912 877644 493996
. 245425 . 846681 LATTTT8
.223014 820534 .463910
.204862 797985 451843
.189819 778229 441196
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Substituting this expression into (4.2) and denoting

_my—xy WV

=T ol g (4.4)
A= —_»:z_:_.:';l-;(Ami j%)
we obtain the formula
A=l +zc2/m™—1]:2 - (4.5)

From the known values of C(8), ir is possible to construct, with the
aid of this formula, a series of curves A(8) for various values of Z (Fig.
7). By analogy with formula (4.3), we may write

L0y _ C
(AU' _v_)z = mry (w2 = o)

and then climinate xg as in (4.3). Finally, we get
w W ri o

2 . il oo 2,m .

(Ay v )2 (Ayz p )1 rg (1 + ZC > . (4.6)

Having determined from the values Xy, X, 1y, I, and the dimension-
less boundary layer thickness (A2 wh) at point x; the values of Z and
A from (4.4), we find from Fig.7 the corresponding value of 8 that is
in one-to-one correspondence with the number C2/m. It is then possi~
ble from (4.6) to determine the boundary-layer thickness at the point
Xg, and so forth. Thus, passing from point to point, it is possible to
determine from the B values obtained, not only Ay, but also all the
other boundary-layer characteristics, in particular, the friction stress
components

T — R (W. >"‘2 Ty Cpvrate .
e = O\ag) > TN =G (0)&;_,—;) , (4.7)
the displacement thickness
o0
« ( . v e
8 :g caz( o) (4.8)
0

and the velocity profiles.

It should be remembered that the method proposed is applicable to
surfaces for which 1 = 0.

Note that an analogous method was previously proposed by Smith
[10] for two-dimensional flows.

We will compare our results with those obtained by other methods.
Howarth [2], Nigam [3], and the author [4] have calculated the boun-
dary layer on a rotating sphere by the method of integral relations.

It has been shown that Nigam's assumption of a constant boundary-
layer thickness is not justified as confirmed by experimental evidence
obtained by Kobashi [11]. Nor does Nigam's result hold concerning
the "break™ in the boundary layer at large distances from the equator.
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Recent experiments by Bowden and Lord [12] showed that such a
"break® does not exist; from the cquator there is emitted a thin radial
jet created by the collision of fluid masses [lowing in from the two
hemispheres.

Let us calculate the ratios of the local values of the skin-fric-
tion stress components at the variable radius r to the correspond-
ing values for a disk (denoted by the superscript®) at the same
radius and the same w, p, and v, The valucs obtained by our
method (points in Fig. 8) corrclate well with the results obtained in
{41 by an integral method (continuous lincs) both for TX/TX° (curve 1)
and Ty/TyD {curve 2). It should be noted, however, that the dimension-
less friction stress components (4.7) themselves are determined more
accurately by our method.

An analogous calculation was performed for a half-body of revo-
lution whosce shape derives from the superposition of a uniform flow
on the flow from a three-dimensional source. This result also agrecs
well with calculation by the method of integral relations {4] (curves
1% and 2°).

REFERENCES

1. L A. Dorfman, llydrodynamic Resistance and Heat Transfer
of Rotaring bodics [in Russian], Fizmatgiz, 1860,

2. L. Howarth, "Note on the boundary layer on a rotating sphere,
Philos, Mag,, vol. 4%, no. 334, 1951.

3. S. D. Nigam, "Note on the boundary layer on a rotating
sphere”, Z. angew. Math. und Phys., pp. 151—165, 1954.

4. L A. Dorfman, "Velocity and thermal boundary layers on an
axisymmetric body rotating in an infinite still medium, " Izv. AN
SSSR, OTN, Mekhanika i mashinostroenie, no. 6, 1962.

5. T. Geis, "Similar boundary layers on bodies of revolution, ”
collection: Boundary-Layer and Heat-Transfer Problems [Russian
translation], Gosenergoizdat, 1960.

8. W. G. Cochran, "The flow due to rotating disc, " Proc. Cam-
bridge Philos. Soc., vol. 30, no. 3, 1934.

7. E. M. Sparrow and J. L. Gregg, " Mass transfer, flow, and
heat transfer about a rotating disk, " Journal of Heat Tramnsfer (Trans-
actions of the ASME, ser. C), no. 4, 1960.

8. M. Il Rogers and G. M. lLance, " The rotationally symymetric
flow of a viscous fluid in the presence of a infinite rotating disk, " J.
Fluid Mech. vol. 7, p. 4, 1960.

9. G. M. Lance, Numerical Methods for High-Speed Computers
[Russian translation], Izd, inostr. litl, 1960,

10. A, M. O. Smith, "Rapid laminar boundary—layer calculations
by piecewise application of similar solutions, " A, Aeronaut. Sci.,
no, 10, 19a6,

11. Y. Kobashi "Measurement of boundary layer of a rotating sphere, "
J. Sci. Hirosima Univ., vol, 20, no.3, 1957,

12. F. P, Bowden and R, G. Lord, "The aerodynamic resistance to
to a sphere rotating at high speed, " Proc, Roy. Soc, A, vol. 271,
no, 1345, 1963,

"

1 August 1964 Leningrad



